新北市政府 110 年度自行研究報告

新北市高灘地園區路燈節電與 降低電費研究計畫

研究機關:新北市政府高灘地工程管理處

研究人員:謝俊隆、蔡文中、蘇宗馨、陳鎧湧

王文哲等

研究期程:110.01.01~110.12.31

摘要

本研究以降低高灘地園區路燈電費與節約用電為目標,藉由調查園區內所有用電設施之迴路與用電負載,階段性汰換園區內高耗能燈具及設置高燈分路開關等管理措施,再利用台電公司推廣之住商時間電價等機制,有效降低高管處每年高達約2,600萬之電費。

研究結果顯示,在使用人數較少的球場設置高燈分路開關,及園區自行車道路燈改用節能 LED 燈具後,皆可有效降低用電需求,節電效率達 60%;另外變更園區 67 組表燈電號改用住商型簡易時間電價計費後,預估 110 年可節省表燈電費 438 萬元,包燈電費因園區汰換節能燈具後,整體負載減少,經向台電公司申請變更 20 組包燈電費契約容量後,估計每年可節省 120 萬元。

本研究經長達數年追蹤後,發現雖然園區路燈近幾年數量不斷增加,但在採取各項節電與節費措施下,仍可成功節省園區每年約550餘萬元之公帑支出。此外研究亦得知,園區部分尚未汰換的高耗能傳統路燈與高瓦數的複金屬球場高燈,電力需求仍然偏高,未來可作為園區下個階段節能減碳的改善目標。

目錄

摘要	i
目錄	ii
圖目錄	iv
表目錄	••••••v
第一章 主旨與背景說明	1
第二章 相關研究及文獻探討	2
2.1 LED 燈光源基本認識	2
2.1.1 LED 發光原理	2
2.1.2 LED 路燈與傳統路燈分析比較	3
2.2 園區電費計費方式	4
2.2.1 包燈計費	4
2.2.2 表燈計費	5
第三章 研究方法	7
3.1 園區用電資料收集與分析	7
3.2 節電措施	8
3.2.1 節能燈具汰換	8
3.2.2 球場高燈分路開關	9
3.3 節費措施	10
3.3.1 推動時間電價計費	10
3.3.2 降低包燈用電契約容量	10

第四章 研究發現	11
4.1 設置高燈分路開關	11
4.2 更換節能燈具對節電影響	12
4.3 採用時間電價計價效益分析	13
4.4 變更用電契約容量減少包燈電費	14
第五章 結論與建議	15
5.1 研究結論	15
5.2 建議事項	15
參考文獻	17
附錄	19

圖目錄

圖	2.1	LED 發光原理與構造2
圖	3.1	台電公司官方網站電子帳單服務系統7
圖	3.2	一般路燈與景觀立燈型式9
圖	3.3	高燈分路開關9
圖	4.1	105~109 年園區電費及路燈數目變化圖11
圖	4.2	設置分路開關前、後用電度數變化趨勢圖12
圖	4.3	更換自行車道節能燈具前後比較圖13
圖	4.4	園區年度表燈電費與每度電價變化趨勢14
		表目錄
表	2.1	LED 光源產品與各種光源的比較3
表	2.2	包燈用電計價方式4
表	2.3	累進電價計價方式(非時間電價)5
表	2.4	住商型簡易時間電價計價方式6
表	3.1	高管處園區路燈數年度統計表8
表	3.2	園區路燈不同燈具型式分類表8
表	3.3	申請改用時間電價計費前後電費變化表10
表	4.1	設置節能燈具前、後效益分析表13

第一章 主旨與背景說明

雙北都會區近年來人口不斷增長,民眾對於休憩的空間需求亦隨之增加,淡水河與基隆河系之高灘地面積廣大,作為雙北地區平時的都會型綠化公園已成為 民眾不可或缺的遊憩場所。隨著國民生活水準提升,以往僅修築公園、自行車道、 行人步道,提供民眾綠地為主的治理觀念,近年來亦朝向提供觀光、運動及遊憩 的理念轉型。

依據最新統計資料,本市所轄高灘地目前有 202 公里的自行車道、約 19,000 盞路燈、5 座景觀橋光雕、100 座的景觀廁所及各種類型的簡易球場,用電設施 及數量逐年增加。園區內增加許多用電設施,固有助於提升民眾的使用舒適性與 便利性,但伴隨而來的是用電量逐年增加,而根據台電公司每年的電費統計,發 現 105 年度園區及行政大樓的電費曾高達 2,600 萬元,這對機關已造成沉重的財 政負擔。因此,要如何透過工程技術與管理手段來提供減少園區用電度數與電費, 又能兼顧民眾舒適的使用環境,已成本市高灘地工程管理處(以下簡稱高管處)園 區管理的一大課題。

考量高灘地園區大都位於行水區域內,較無屏障遮蔽,風速亦比市區側強,一次大水或強風,都能造成燈具毀損,廠商保固責任難以釐清,故並未納入本市的 PFI 的節能路燈換裝計劃內[1]。因此,高管處乃自行研議將目前採用主要園區照明之高耗能的鈉光燈、複金屬燈具,逐步汰換為節能 LED 燈具;另外在使用人數不多的球場設置照明的分路開關,讓民眾使用球場時,才打開電源,藉由減少用電時間,達成減少園區用電量目的,加上台電公司 105 年推廣的不同用電時間、不同電價計收電費的「住商型簡易型時間電價」政策[2],透過篩選園區每月用電達700 度以上之表燈電號變更計費方式,讓以夜間離峰時間用電為主的園區照明,電費得以大幅降低。

第二章 相關研究及文獻探討

2.1 LED 燈光源基本認識

2.1.1 LED 發光原理[3]

LED 是將微小的半導體晶片被封裝在潔淨的環氧樹脂物中,當兩端加上順向電壓,電子經過該晶片時,帶負電的電子移動到帶正電的電洞區域並與之複合,電子和電洞消失的同時產生光子。電子和電洞之間的能量(帶隙)越大,產生的光子的能量就越高,其能量分佈在可見光的頻譜範圍內,以藍色光、紫色光攜帶的能量最多,橘色光、紅色光攜帶的能量最少,不同的半導體材料具有不同的帶隙,從而能夠發出不同顏色的光,再利用不同的螢光粉可以將光顏色轉便成演色性更高、更舒適的色光(參照圖 2-1)。

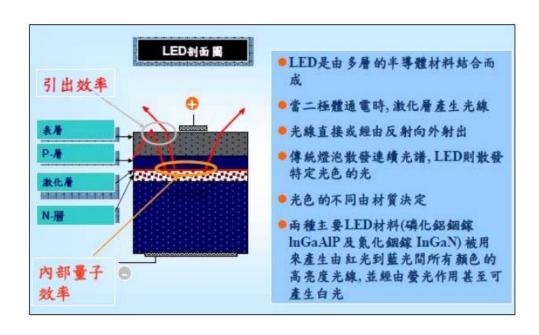


圖 2.1 LED 的發光原理與構造

LED 早期以指示光源應用為主及一些特殊應用如軍事、隔離的工業照明等,在這些場合的應用主要係利用 LED 的可靠性,降低維護費用,補償 LED 照明的高成本。近年來,由於 LED 效率和亮度不斷提高,且製造成本持續降

低,配合 LED 所具有的壽命長、安全性高、發光效率高(低功率)、色彩豐富、驅動與調控彈性高、體積小、環保等特點,使得 LED 在一般照明市場應用得以大幅度擴張,帶動其市場需求成長。

2.1.2 LED 路燈與傳統路燈分析比較

國內現有道路照明常見採用的光源有螢光省電燈泡、高壓鈉氣燈 (HPS)、複金屬燈泡及 LED 光源等^{[4][5]}(參照表 2.1),目前比較成熟的傳統路燈光源中,以高壓鈉氣燈泡或複金屬燈泡運用較廣,在新北市高灘地園區的自行車道路上,則採用光效率相對較高的高壓鈉氣燈泡為主,一般可達 110lm/W 以上。而隨著 LED 光源光效率不斷提升,且具有能耗低、壽命長、演色性佳及易操控等優勢,目前已逐漸取代傳統燈具,成為未來替代光源的主流。

光源種類 效率(lm/W) 演色性(Ra) 色温度(K) 使用壽命(小時) 鹵素燈 3000 25 100 2,000~5,000 螢光省電燈泡 60 4000 5,000~6,000 85 高演色性 T5 螢光燈 90-100 85 2700 15,000~20,000 LED 球泡燈 80-100 4000 25,000~30,000 80-85 LED 燈 100 -140 65-85 2700~6500 25,000~30,000 高壓鈉氣燈 90-130 23~50 2000~2500 8,000~16,000 $65 \sim 85$ 複金屬燈 90 3000~4700 10,000~20,000

表 2.1 LED 光源產品與各種光源的比較

註:表格內容為参照各家廠商型錄整理。

而國內利用 LED 節能燈具取代高壓鈉氣燈泡或複金屬燈泡,相關工程單位已有多起實際案例,104 年高雄市進行氣爆災後重建時^[6],即利用 150 瓦 LED燈具與 250 瓦高壓鈉燈進行對照比較,依辦理結果顯示,採用 LED 燈具較節省電費,傳統高壓鈉燈維修成本較低,以 5 年維修成本計算,節省電費約可抵銷

維修成本差距,依亮度總成本考量,LED 燈具適合 10 米以下街弄巷道。另國道高速公路局辦理鼎金交流道新增匝道工程時^[7],亦曾經利用 60 瓦 LED 燈具與 150 瓦高壓鈉燈進行效益評估顯示,節能比達 67%,以台電公用路燈包燈電價計價方式計算,8 盞燈具 5 年可節省 56,448 元之電費。因此高管處自 107 年起,已針對高灘地不易淹水地區之路燈,在高壓鈉氣燈具損毀後,即改換裝較低瓦數之 LED 燈具,藉以達成節電與節省電費之目的。

2.2 園區電費計費方式[8]

台電公司主要的電費計價方式有包燈電價、表燈電價、包力電價等多種形式,在高管處園區常見的用電設施,則是採表燈計費電價及包燈計費為主。

2.2.1 包燈計費

高管處園區內有常見的用電設施種類繁多,如堤外道路或自行車道的公用路燈、球場高燈、景觀橋光雕及景觀廁所等,其中僅夜間供電之堤外道路或自行車道的夜間公用照明,最常採用包燈電價計費(如表 2.2),依台電公司低壓供電的電價計費方式,其計費方法傳統光源 100 瓦以下,每燈每月電價為 92.74元,若超出 100 瓦,則每 100 瓦加收 74.81元;採用 LED 燈為每瓦每月電價為 0.71元。

表 2.2 包燈用電計價方式

一、包燈用電

單位:元

# 113 H			No.	+111.
分	類	容量	單位	單價
1600	一般	100 瓦以下部分	年经复日	92.74
電燈	電 燈	100 瓦以上部分·每超出 1~100 瓦	每燈每月	加 74.81
丛	LED 公用路燈		每瓦每月	0.71
小型器具—		50 瓦以下部分	与目与 口	81.53
		50 瓦以上部分·每超出 1~50 瓦	毎具毎月	加 54.54
交通指揮燈		每一路口為1組	每組每月	483.87
		每一路口最大入力數	每瓦每月	1.35

註:1.一般電燈容量在60瓦以下者·按100瓦以下電價40%計收。

^{2.} 電燈日夜供電者照上表單價加倍計收。

^{3.}小型器具僅於日間或夜間供電者照上表單價減半計收。

^{4.}公用路燈照上表電燈單價減收 50%。

^{5.}公用路燈如屬獲得節能標章驗證通過之道路照明燈具·並檢附「經濟部能源局節能標章使用證書」者·適用上表 LED 公用路燈單價。

2.2.2 表燈計費

至於園區部分需要彈性供電的自行車租借站、球場高燈、景觀橋光雕、景觀廟所或部分自行車道照明等設施,則是採用表燈用電方式計價,其計價方法 係依每月實際度數分段計費,一般可以選擇累進電價(即非時間電價,未區分 尖離峰用電)或時間電價(有區分尖離峰用電)計費,兩者計價方式有所不同。

累進電價係按使用度數分段計收電費,時間電價每月電費則為基本電費與流動電費之總和。一般用電量較少且離峰時間(22:30~07:30)用電量不多,多按累進電價計費。累進電價依用電級距遞增,分為6段級距計費,並沒有尖離峰時段的差別(如表2.3);以夏月為例,假設每月用電400度,其中的120度適用1.63元,210度(330-120)適用2.38元,剩餘的70度(434-330)則適用3.52元,故電價高低僅與用電量多寡有關,與何時時間用電無關。長期以來,配合政府照顧民生政策,累進電價第1、2段電價以較低電價訂定,因此對多數家庭而言,選用非時間電價電費負擔較輕,如果用電量規模不大,或是用電大部分集中在尖峰時段,選擇時間電價未必會減輕電費負擔

表 2.3 累進電價計價方式(非時間電價)

分段度數	i	夏月單價 (6月1日~9月30日)	West and the Control of the Control
120 度以下	每度	1.63	1.63
121~330度	每 度	2.38	2.10
331~500度	每度	3.52	2.89
501~700度	每度	4.80	3.94
701~1000度	每度	5.66	4.60
1001 度以上	每 度	6.41	5.03

(107年4月1日起實施之表燈非時間非營業電價)

時間電價則是依照尖離峰時間不同的發電成本,訂定不同電價,白天尖峰時間電價較高(4.23~4.44元/度),夜間離峰時間電價較低(1.73~1.80元/度),台電公司在105年10月1日推動的「住商型簡易時間電價」(如表2.4),主要是針對一般家庭和小商店而設計,使其有更多元的電價方案可供評估選用。依據台電公司分析計算,若每月用電量在700度以下的用戶,由於累進電價第一、二段級距的電價較低,留在現行累進電價方案最划算。每月用電量在4,000度以上的用戶,例如便利超商、洗衣店等,適合既有的二段式表燈時間電價。至於每月用電在700度至4,000度之間的用戶,多數為用電較多的家庭、社區公設等,則適合選用住商型簡易時間電價。而高管處園區內,許多球場或自行車道夜間照明的表燈用電量,即屬於離峰用電時數高且用電量大於700度之表燈用電,因此相當適合採用「住商型簡易時間電價」。

表 2.4 住商型簡易時間電價計價方式

1.簡易型時間電價

(1) 二段式 單位:元 分 類 (6/1至9/30) (夏月以外時間) 基本電費 每戶每月 按戶計收 75.00 週一 尖峰時間 07:30~22:30 4.44 4.23 00:00~07:30 離峰時間 1.80 1.73 22:30~24:00 週 五 每 度 流動電費 週六、週日 離峰時間 1.80 1.73 及離峰日 每月總度數超過2,000度之部分 每 度 加 0.96

(2)三段式 單位:元 夏月 非夏月 分 鞧 (6/1至9/30) (夏月以外時間) 基本電費 按戶計收 每戶每月 75.00 尖峰 10:00~12:00 夏 月 6.20 13:00~17:00 時間 週 07:30~10:00 夏 12:00~13:00 4.07 半尖峰 至 17:00~22:30 時間 週 五 非夏月 07:30~22:30 3.88 度 流動電費 00:00~07:30 離峰時間 1.80 1.73 22:30~24:00 週六、 週日及 離峰時間 1.80 1.73 離峰日 每月總度數超過2,000度之部分 度 加 0.96

第三章 研究方法

本章節將介紹本次研究方式及過程,首先藉由收集園區內用電設施之迴路 與用電電號,區分計價方式,做為後續導入「住商型簡易時間電價」、逐年汰換 裝園區內耗能燈具、設置高燈分路開關及變更包燈計費的契約容量前後,節省 電費與節電之效益比較依據。

3.1 園區用電資料收集與分析

實際登入台電公司官方網站高管處之電子帳單服務系統如圖 3.1 所示 (https://ebpps2.taipower.com.tw/bill/myebill-overview),可收集歷年來高管處的用電資料,包含用電電號、計費月份、用電種類、用電度數(僅表燈用電)及計費金額等基本資料。而依據台電網站下載資料,105年高管處未導入「住商型簡易時間電價」前,總用電費用 2,583 萬元,扣除行政辦公大樓電費,園區用電費用 2,333 萬餘元,其中表燈電號 183 組,用電度數 339.5 萬度,電費約 1,540萬元,至於包燈電號 76 組,電費約 793 萬元;隨著園區用電設施不斷增加,截至 110 年止,表燈電號已成長至 210 組、包燈電號則成長至 121 組。

圖 3.1 台電公司官方網站電子帳單服務系統

另依據新北市路燈管理系統^[9]統計資料如表 3.1,顯示高管處園區近年來路 燈數目隨著園區設施不斷充實而增加,伴隨而來電力度數與電費亦有增加之 虞。

年度 105 106 107 108 109

18,224

18,599

19,146

17,683

表 3.1 高管處園區路燈數年度統計表

3.2 節電措施

盞數

3.2.1 節能燈具汰換

依據 105 年路燈管理系統高灘地園區照明燈數量約 17,210 盞,依其設置型式如表 3-2,可大致區分為四大類:包含一般路燈約 2,250 盞、景觀立燈約7,100 盞、球場高燈複金屬燈約 520 盞,其餘為低瓦數的壁燈、矮燈、景觀橋輔助照明燈(螢光燈管、螢光省電燈泡等)。

±	2 2	Œ	15 DA	W -	17 W	뭐 때	Ŀ	八业工士	
衣	3.2	哀	血路	焰小	川焰	县型	厾.	分類表	

17,210

燈具型式	一般路燈	景觀立燈	球場高燈	壁燈、矮燈等
光源型式	鈉光燈	鈉光燈	複金屬燈	日光燈、螢光省 電燈泡等
桿高 (米)	8	3. 5	>10	<2
耗電功率 (瓦)	250	70	400	<10

因近年來 LED 燈技術發展迅速,發光效率(Lm/瓦)更高、價格也更低廉,另外演色性較高的特性,其顏色較接近自然光,對於園區以非幹道為主的道路型態,以低瓦數 LED 燈取代高瓦數高壓鈉氣燈具有可行性,因此自 107 年起,對於園區部分較不易淹水地區所設置的 250 瓦一般路燈、70 瓦景觀立燈(如圖3.2),已逐年汰換為 100~150 瓦 LED 燈具及 20 瓦 LED 燈泡,截至 109 年止,園區已更換約 580 蓋一般路燈及 4,700 蓋景觀立燈。

圖 3-2 一般路燈與景觀立燈型式

3.2.2 球場高燈分路開關

對於提供民眾打球球場照明的高燈,因為光源要能呈現真實物體顏色,燈 光演色性不宜太低,故採用較接近自然光高瓦數的複金屬燈。由於園區球場高 燈的電源控制,過去皆由專人在每天下午6時至開關箱開啟電源,晚上11時關 閉電源,如使用人數不多,常會發現球場空無一人,高燈卻持續開啟情形,至 有浪費電力之虞。

因此,高管處在 109 年 9 月選定大漢溪右岸一處有 5 座球場緊連的區域(如圖 3.3),設置 5 處球場高燈分路開關(規格:士林電機、箱型電磁開關 MS-P11PB),試辦「有需求再開燈」模式。民眾進入球場後,可打開附掛在該球場燈桿上的分路開關,讓個別球場高燈放亮,離開球場時,隨即關閉電源,藉由減少高燈開啟時間,達成節電之目的,最後再利用控制球場高燈的電號(01-74-8252-00-2),追蹤變更球場高燈開啟模式後,用電度數與電費的變化情形。

圖 3-3 高燈分路開關

3.3 節費措施

高灘地園區用電的計費方式有表燈電價與包燈電價兩種,其中表燈電價是以每月實際度數分段計費,包燈電價則是以該電號的路燈總數與功率數,經台電公司核算契約容量後訂定電價,對於如何減少兩種電號的電價方式,高管處採用表燈電號以推動時間電價計費,包燈電號則是申請降低包燈用電之契約容量兩種。

3.3.1 推動時間電價計費

台電公司 105 年推動的「住商型簡易時間電價」政策,經計算評估 後,若每月用電量在 700 度以上,且用電時間多為離峰時間的電號,相當 適合採用時間電價計費,故高管處在 106 年 6 月先試辦 39 組電號,向台電 公司申請改用「住商型簡易時間電價」。比較申請前、後電費變化(如表 3-3),發現每度電費單價從 4.80 元,降低至 3.19 元,電費下降約 240 萬元, 顯示改用時間電價計費,確有節省電費的效果。因此,高管處在 109 年持 續篩選 28 組表燈電號,申請變更時間電價計費,讓節省電費的實際效益持 續擴大。

年度 105 106 107 1.592,979 1,761,701 1,638,899 用電量(度) 電費(元) 7,652,877 6,932,371 5,232,760 3.94 單價(元/度) 4.80 3.19

表 3.3 申請改用時間電價計費前後電費變化表

3.3.2 降低包燈用電契約容量

高灘地園區汰換高瓦數鈉光燈,改用低瓦數 LED 燈具一定數量後,包燈電號契約容量降低,而計費方式也會因改用 LED 燈,而改以實際總瓦數核算,因此高管處自 108 年起,針對已換裝 LED 盞數較多的 20 組包燈電號,向台電公司申請調降契約容量,藉以減少包燈電號整體電價。

第四章 結果與討論

依據台電公司電子帳單服務系統資料,高管處園區 105~109 年電費變化情形 (如圖 4.1),在排除行政辦公大樓用電後,顯示 105 年電費達到高峰約 2,333 萬餘元,自 106 年開始導入「住商型簡易時間電價」計費方式後,整體電費已有下降 趨勢,108 年持續進行汰換園區內高耗能燈具、設置高燈分路開關等管理措施,另外向台電公司申請變更 28 組住商時間電價計費與變更包燈電號之契約容量後,雖然園區路燈數目持續增加,但 109 年電費已降至 1,939 萬餘元,電費節省效益明顯。

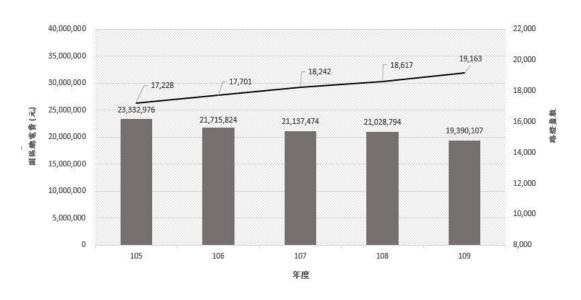


圖 4.1 105~109 年園區電費及路燈數目變化圖

4.1 設置高燈分路開關

為提高球場照明節電效率,高管處 109 年 9 月在大漢溪右岸,挑選一處有 5 座球場及 20 支高燈的區域,試辦「有需求再開燈」模式。由於這 5 座球場照明是由同一個開關控制,因此常有使用 1 座球場,卻有 5 座球場同時開燈的情形,因此高管處選擇在每座球場各設置 1 處高燈分路開關,讓民眾使用球場時,再按壓開關,開啟高燈電源,離開時,可隨即關閉,比較設置開關前後高燈用電度數的差別如圖 4.2,結果發現,未設置前(109 年 2~8 月),每月平均用

電度數約在 2,785 度,設置完成後(109 + 10 - 110 + 1 - 110 + 1 - 110 + 1 - 110 + 1 + 110 + 11

分析用電度數下降原因,主要是球場開燈時間大幅減少,球場用電量也隨 之降低,如果球場使用頻率較高,增加用電時間,節電效益較不明顯。

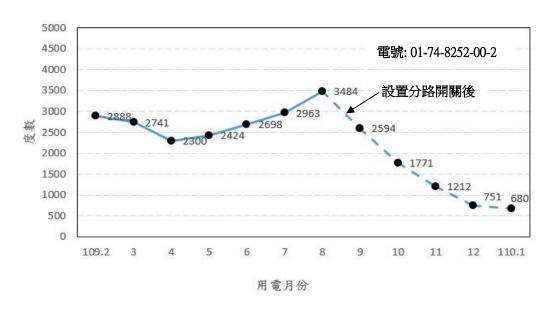


圖 4.2 設置分路開關前、後用電度數變化趨勢圖

4.2 更換節能燈具對節電影響

以園區常見一般路燈採用消耗功率 250 瓦鈉燈與景觀立燈 70 瓦納燈而言,每日開燈 12 小時(18 時至隔日 6 時)進行估算,每年每盞用電量分別為為 1,095 與 307 度,汰換為 150 瓦 LED 燈具及 20 瓦 LED 燈泡後,每年每盞用電量降低為 657 與 88 度。

如以至 109 年止,園區共更換約 580 蓋一般路燈及 4,700 蓋景觀立燈計算,未更換前用電總量為 2,078,000 度,更換後,預估共可減少使用電力 1,283,340 度,節電效率約 62%,估算結果整理如表 4.1,另依經濟部能源局公布 108 年度電力排碳係數 0.509 公斤 CO₂e/度換算^[10],每年可減少二氧化碳排放量約 653 公噸。

另外高管處 108 年曾在八里下罟子漁港自行車道處,選定一處表燈電號

表 4.1 設置節能燈具前、後效益分析表

中然刊上	≫ \$L	汰換前		汰扎	節電量	
路燈型式		光源	瓦數(W)	光源	瓦數(W)	(度/年)
一般路燈	580	鈉燈	250	LED	150	254,040
景觀立燈	4,700	鈉燈	70	LED	20	1,029,300

開燈時間:12 小時(18 時至隔日 6 時)

(05-97-0170-06-3)實際進行測試(如圖 4.3),在維持一定照度要求下,將 30 支 150 瓦鈉光燈路燈,更換為 70 瓦 LED 台達電 70 瓦燈具後,發現每月用電量從 1850 度降至 650 度,節電率達 65%,實際節電率與預估值十分接近。

圖 4.3 更換自行車道節能燈具前後比較

4.3 採用時間電價計價效益分析

高管處於 106 年導入簡易時間電價計費後,發現改用後 39 組電號,105 年平均每度電價 4.80 元, 107 年可降至 3.19 元,109 年持續變更 28 組表燈電號改用時間電價,依據 110 年 1~10 月最新資料,發現改用後 67 組的總用電度數為 2,075,208 度,總電費為 6,596,455 元,平均每度電價維持在 3.18 元,此結果顯示,未來藉由定期追蹤園區內表燈電號,如發現平均每度電價大於 3.18 元者,即有改用時間電價計費的價值。

此外,由園區年度表燈電費變化趨勢如圖 4.4,亦可發現在 106、109 年當高管處向台電公司申請變更計費方式後,在隔年 107、110 年的總電費與平均每度電價皆會明顯下降,110 年(僅統計 1~10 月)的平均每度電價已經降至每度3.08 元,如以 105 年每度 4.54 元計算,園區每年表燈用電約 300 萬度,推估110 年表燈用電可節省 438 萬元整。

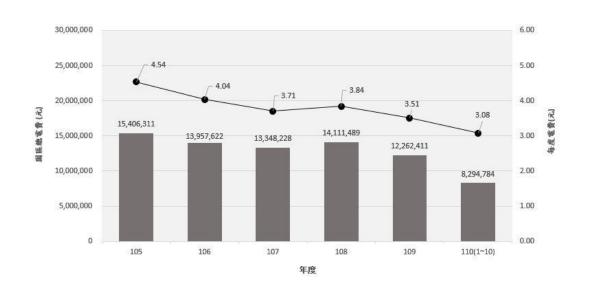


圖 4.4 園區年度表燈電費與每度電價變化趨勢

4.4 變更用電契約容量減少包燈電費

傳統高耗能鈉光燈汰換為 LED 節能燈具後,用電負載明顯下降,因此篩選 20 組採用節能燈具較多的包燈電號,檢附園區迴路調查等相關資料,向台電公司申請調降電號契約容量,根據台電公司提供的年度統計資料顯示,105 年的園區總包燈電費為 7,926,665 元,109 年為 7,127,696 元,預估 110 年可再降至 6,728,248 元(統計至 110 年 10 月份),每年約可節省 120 萬元,未來可持續追蹤園區路燈汰換節能燈具進度,定期向台電公司申請調降電號契約容量。

第五章 結論與建議

5.1 研究結論

- 設置高燈分路開關,可大幅減少大漢溪右岸使用人數較低的球場亮燈時間,讓用電度數降低60%,節電效果明顯。
- 2. 在八里下罟子自行車道處,試辦採用低瓦數 LED 燈具汰換 30 盞高壓鈉光 燈後,結果顯示每月用電量可從 1,850 度降至 650 度。
- 3. 園區更換 580 盞一般路燈及 4,700 盞景觀立燈,改用低瓦數 LED 節能燈具後,經推估共可減少使用電力 1,283,340 度,節電效率約 62%。
- 4. 變更園區 67 組電號改用時間電價計費後,110 年全園區的表燈電號每度電價已降至每度 3.08 元,以 105 年每度 4.54 元計算,年用電 300 萬度,預估 110 年表燈用電可節省 438 萬元整。
- 5. 109 年篩選 20 組使用 LED 節能燈具的包燈電號,經辦理調降契約容量後, 推估 110 年較 105 年可節省 120 萬元。
- 6. 每月下載台電公司電子帳單服務系統收費資料,可迅速掌握高管處全園區用電情形,利用各電號之收費金額、用電量等,可作為分析節電、節費措施是否有效分析之依據。

5.2 建議事項

- 1.針對高管處園區內的有夜間照明球場,建議可先調查夜間使用頻率高低,如果使用人數不多,可研擬設置高燈分路開關,減少不必要的高燈開啟。
- 2. 除堤外道路傳統路燈與自行車道景觀立燈,已逐步換裝為 LED 節能燈具外,園區內眾多的球場高燈,仍多採用高瓦數的複金屬燈具,建議未來可評估作為下階段更換 LED 節能燈具重點。
- 對於園區路燈換裝節能燈具後,建議可定期作各個開關箱迴路調查,藉由 檢視園區各包燈電號的負載值下降情形,向台電公司申請契約容量變更,

以調降該電號之電費。

4. 園區內的表燈電號,如作為夜間照明使用,每月用電量達700度以上,每 度電費高於3.18元時,建議可採用「簡易型時間電價」方式計費。

参考文獻

- [1] 新北市政府養護工程處-"PFI 模式結合成效式契約在國內之應用以新北市 政府節能路燈換裝計畫為例",
 - https://www.maintenance.ntpc.gov.tw/home.jsp?id=dc5b21213dfb17e5
- [2] 台電月刊 647期-"住商型簡易時間電價正式上路", https://tpcjournal.taipower.com.tw/article/ 1743
- [3] 經濟部能源局-"LED照明節能應用技術手冊", https://egov.ftis.org.tw/upload/LED照明節能應用技術手冊.pdf
- [4] 交通部臺灣區國道高速公路局-"國道照明應用 LED 路燈可行性評估差異性分析報告", https://www.freeway.gov.tw/Upload/research/201511/國道照明應用LED路燈.pdf
- [5] 工業技術研究院-"LED技術實務應用", https://www.ftis.org.tw/active/ download/LED技術實務應用.pdf
- [6] 高雄市政府工務局新建工程處-"新建道路 LED 路燈運用節能之統計與分析", https://pwb.kcg.gov.tw/web/FileDownLoad/File/Upload 20150805151124 98420.pdf
- [7] 高速公路局拓建處98年度年報-"鼎金交流道新增匝道第571A標工程節能減碳之作為", https://www.freeway.gov.tw/UserFiles/File/Widening/98YEAR_REPORT/2009_04_01.pdf
- [8] 台灣電力公司電價表-https://www.taipower.com.tw/tc/page.aspx?mid=238
- [9] 新北市路燈管理系統-https://streetlight.ntpc.gov.tw/SL2019/Contents

 Share/USE Login/index.html

[10] 經濟部能源局,https://escs.cdri.org.tw/wp-content/uploads/2020/07/經濟部能源局《108年度電力排碳係數》.pdf

附錄

士林電機 MS-P11PB 箱形電磁開關(高燈分路開關)

規格書

型名		開放型	MSO	-P11		MSO	-P12		MSO	-P16	
		箱型	MS-P11 MS-P11PB		\	MS-P12			MS-P16		
		箱型附按鈕			MS-P12PB			MS-P	16PB	8	
使用之電磁接触	獨岩	<u>.</u>	S-P1	ĺ		S-P12			S-P16	5	
使用之熱動過	電流	機電器	TH-P	12		TH-P	12		TH-P	20	
馬達額定容量		ì	kW	HP	A	kW	HP	A	kW	HP	A
CNS C4084	單	100~110V	0.55	0.75	12	0.55	0.75	12	0.75	1	16
ЛS C8325	相	200~220V	1.1	1.5	12	1.1	1.5	12	1.5	2	16
JEM 1038		200~220V	3	4	12	3	4	12	3.7	5	16
AC3級	相	380~440V	4	5.5	9	4	5.5	9	5.5	7.5	12
額定容量	旧	500~550V	4	5.5	7	4	5.5	7	5.5	7.5	10
IEC 609 <mark>4</mark> 7-4-1		240V	3.5	4.5	13	3.5	4.5	13	4.5	6	18
EN 60947-4-1 DIN VDE 0660	Ξ	440V	5.5	7.5	12	5.5	7.5	12	7.5	10	16
AC3級	相	550V	5.5	7.5	9	5.5	7.5	9	7.5	10	13
額定容量		660V	5.5	7.5	7	5.5	7.5	7	7.5	10	9
	單	100~120V		0.5	9.8		0.5	9.8		1	16
UL 508	相	220~240V		2	12		2	12		3	17
CSA-C22.2		220~240V		3	9.6		3	9.6		5	15.2
額定容量	土相	440~480V		7.5	11		7.5	11		10	14
L	相	550~600V		10	11		10	11		10	11
電磁接觸器		標準	1a(11	10)		lalb(INO INC)		lalb(INO INC)			
補助接點構成 特殊		特殊	1b(1NC)			2a(2NO)		-			
熱動過電流繼電器 補助接點構成		lalb(INO INC)) lalb(1NO 1NC)) 1a1b(1NO 1NC)					
開放型		0.43			0.45			0.55			
重量(Kg)		箱型	0.83			1.12			1.15		
		箱型附按鈕	0.93			1.22			1.25		

台達電 LED 70W路燈

規格

4	*	=200	150
	圧	貝	The same

型 號: SLDD7N3M1BAT-5C(主型式)(110V/220V)/安定器USCO-

075140GSB(100~277V)/光源SLDD-9P15S-5000K

證書號碼: 1081148續1

證書有效期限: 2021/12/17 - 2023/12/16

廠牌名稱: 台達電子(DELTA)

光源種類: LED

色溫(K): 5000

燈具額定輸入功率(W): 65

標示發光效率(lm/W): 150

3000小時光束維持率(%): 100.3

標示功率因數: 0.95

照度均勻度: 0.41

初始發光效率(lm/W) 基準: 140

3000小時光束維持率(%)基準: 95

功率因數基準: 0.9

照度均勻度基準: 0.33

Ø 省能特點

節能省電

全文完